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Abstract

This paper deals with the vibration and buckling analyses of the first-order shear deformable rhombic and square plates

using a p-type variational method. The formulation includes rotary inertia and transverse shear terms. The full plate is

modeled with a single domain defined by a set of geometric points in the plane of the plate. Square and rectangular plates

with a circular hole at the center are treated as the numerical example for the doubly connected plate and are modeled

using one quarter of the geometry and only two elements. The symmetry about x and y axes with regards to load and

boundary conditions are exploited. Buckling coefficients and natural frequencies are calculated and compared with results

from the published sources and the finite element method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Thin plate with an opening can be found in the form of many practical load-bearing structural components
in aerospace and ship building industries. Literally, thousands of research papers have been published in the
literature over the last several decades on the buckling and vibration of plates. In this paper, only a few studies
by others with direct relevance are briefly discussed in the following. The plate buckling problem has been
studied using both the analytical and numerical methods (Timoshenko and Gere [1], and Bulson [2]). Leissa
and Kang [3,4] presented an exact solution procedure for the buckling analysis of rectangular plates having
two opposite edges simply supported (SSSS) as well as subjected to linearly varying in-plane normal stress.
They have enlisted some of the earlier useful works on this subject. Dickinson and co-workers [5–7] used
Rayleigh–Ritz method for the vibration and buckling analyses of rectangular plates. Around and during the
1980s, Mizusawa and co-workers published a series of papers which can be cited in their paper [8,9] on the
buckling and vibration of skew plates. Liew et al. [10] published a review paper on the vibration of first-order
shear deformable plate citing 132 publications. Then Liew and co-workers [11–18] published a series of papers
on the bending, buckling and vibration of different shaped plates. Buckling of rectangular plates with eccentric
holes has also been studied and reported in the literature (El-Sawy and Nazmy [19]). Similarly, through a
simple literature search, one can find published works on the vibration of various shaped plates with cutouts
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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like the one by Huang and Sakiyama [20]. The authors of this paper also published their work on the
vibration, bending and buckling of various shaped plates [21–23], wherein they used a modified form of the
Ritz method.

This paper presents the vibration and buckling analyses using a displacement based p-type numerical
method of first-order shear deformable rhombic and square plates with and without openings. This method
permits analysis of a plate without the hole by considering the model represented by only one quadrilateral
domain and the accuracy in the results can be improved by increasing the order of the polynomials used for
the displacement fields. Similarly, the analysis of a doubly connected plate problems has been performed with
only two sub-regions in the quarter section of the geometry and the use of symmetry conditions with regards
to geometry, boundary and loading has been made. The convergence studies are also performed in this paper
for the buckling of rhombic plate and square plate with a circular hole at the center. Numerical results in
dimensionless form corresponding to buckling coefficient ðk ¼ Pcra=p2DÞ and frequency parameter
l ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p� �
in terms of the load, length, thickness, mass density and flexural rigidity are calculated

and compared with the published results in Refs. [11,14,16] and also with the finite element method using I-
DEAS [25]. Variations of the buckling coefficient (k) and frequency parameter (l) with the plate thickness and
the hole diameter are also presented graphically and discussed in this paper.

2. Equations for the elastic plate

The displacement components ðu0; v0;w0Þ along the Cartesian axes ðx; y; zÞ, respectively, at an arbitrary point
in the plate are expressed in matrix form as

fûg ¼ ½Z1�fDg, (1)

where

fûgT ¼ f u0 v0 w0 g; fDgT ¼ f u v w b1 b2 g; ½Z1� ¼

1 0 0 z 0

0 1 0 0 z

0 0 1 0 0

2
64

3
75.

Also, ðu; v;wÞ denote the displacement components at the middle plane of the plate in ðx; y; zÞ directions,
respectively, and ðb1; b2Þ are the components of rotation of the normal to the middle plane. Coordinate z is
measured along the perpendicular to the middle plane.

The strain–displacement relationship is derived as

fe0g ¼ ½Z�fX g and fX g ¼ ½d�fDg, (2)

where

fe0gT ¼ f e
0
x e0y g0xy g0yz g0zx g,

fX gT ¼ f ex ey gxy gyz gzx akx aky akxy g,

ex ¼
qu

qx
; ey ¼

qv

qy
; gxy ¼

qu

qy
þ

qn
qx
; gyz ¼

qw

qy
þ b2; gzx ¼

qw

qx
þ b1,

akx ¼
qb1
qx

; aky ¼
qb2
qy

; akxy ¼
qb1
qy
þ

qb2
qx

. ð3Þ

½Z� ¼

1 0 0 0 0 z 0 0

0 1 0 0 0 0 z 0

0 0 1 0 0 0 0 z

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

2
6666664

3
7777775
,
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½d�T ¼

q
qx

0 q
qy

0 0 0 0 0

0 q
qy

q
qx

0 0 0 0 0

0 0 q
qy

q
qx

0 0 0 0

0 0 0 0 1 q
qx

0 q
qy

0 0 0 1 0 0 q
qy

q
qx

2
666666664

3
777777775
.

The strain energy is given by

dU ¼ 1
2
fe0gT½E�fe0gdxdydz ¼ 1

2
fX gTð½Z�T½E�½Z�dzÞfX gdxdy, (4)

where matrix [E] is of fifth order and composed of the elastic modulus (E), the Poisson’s ratio (n) and
kscf ¼ 5=6 is the shear correction factor used here to compensate for the parabolic distribution of the
transverse shear stress. The non-zero terms of [E] are as follows:

E11 ¼ E22 ¼ E=ð1� n2Þ; E12 ¼ E21 ¼ nE11; E33 ¼ ð1=2ÞE=ð1þ nÞ,

E44 ¼ E55 ¼ kscfE33. ð5Þ

In a similar manner, the kinetic energy expression can be written as

dK ¼ 1
2
r _e0
� �T

½E�f_e0gdxdy dz ¼ 1
2
f _DgTðr½Z1�

T½Z1�dzÞf _Dgdxdy. (6)

Here, r ¼ mass density of the plate material and over-dot represents the time derivative. Integration of Eqs.
(4) and (6) over the thickness of the plate yields

U ¼
1

2

ZZ
Area

fX gT½D�fX gdxdy; K ¼
1

2

ZZ
Area

f _DgT½A0�f _Dgdxdy; (7)

where matrices ½D�8�8 and ½A0�5�5 are composed of the geometric and elastic properties of the plate and are
given by the integrals

½D� ¼

Z þh=2

�h=2
½Z�T½E�½Z�dz; ½A0� ¼ r

Z þh=2

�h=2
½Z1�

T½Z1�dz. (8)

The non-zero terms in ½D�8�8 are

D11 ¼ D22 ¼ K0; D12 ¼ D21 ¼ nK0; D33 ¼ ½ð1� nÞ=2�K0; D44 ¼ D55 ¼ kscfK0,

D66 ¼ D77 ¼ D0; D67 ¼ D76 ¼ nD0; D88 ¼ ½ð1� nÞ=2�D0, ð9Þ

where K0 ¼ Eh=ð1� n2Þ and D0 ¼ Eh3=½12ð1� n2Þ� are respectively the extensional and flexural rigidities of
the plate. Similarly, matrix ½A0�5�5 which can be obtained exactly by integrating contains both the
translational and rotary inertias. In the above, basic equations for the first-order-shear deformable plate have
been presented. In the following section, stiffness matrix, consistent mass matrix and consistent load vector are
derived for a defined geometry of the plate.
3. Stiffness and mass matrices for the analysis of a doubly connected plate

Fig. 1 shows the middle plane of an arbitrary-shaped plate with an opening and the annulus is divided
into a number of quadrilateral sub-regions. A quadrilateral sub-region is further defined in Fig. 2
by four curved edges and a number of points which can be on and inside the boundary. The thickness (h)
of the plate is assumed to be uniform and small in comparison with the other dimensions. The co-
ordinates (x, y) of an arbitrary point inside the quadrilateral region, wherein the natural coordinates x
and Z bounded by �1pðx; ZÞpþ 1 are defined, can be interpolated using the prescribed coordinates ðxi; yiÞ

of the geometric points shown in Fig. 2 and the shape function Niðx; ZÞ with i ¼ 1; 2; 3; . . . ; n (Weaver
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Fig. 1. Middle plane of a doubly connected plate divided into quadrilateral sub-regions.

ξ

η

x 

y 

Fig. 2. Natural coordinate system in a quadrilateral domain.
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and Johnson [24]):

x ¼
Xn

i¼1

Niðx; ZÞxi; y ¼
Xn

i¼1

Niðx; ZÞyi. (10)

In a similar manner, the displacement components can also be interpolated using a different set of preselected
points on the quadrilateral domain:

u ¼
Xp

i¼1

f iðx; ZÞUi; v ¼
Xp

i¼1

f iðx; ZÞV i; w ¼
Xp

i¼1

f iðx; ZÞW i,

b1 ¼
Xp

i¼1

f iðx; ZÞyi; b2 ¼
Xp

i¼1

f iðx; ZÞfi. ð11Þ

In the above equations, f iðx; ZÞ is the displacement shape function and indices Ui, Vi, Wi, yi and fi correspond
to u, v, w, b1 and b2 respectively, at the ith displacement node. In this work, u and v are used only in the
buckling load calculations as discussed in Ref. [23]. For the flexure of the plate only, the orders of matrices [D]
and [A0] in Eq. (8) will be fifth and third respectively. If ‘ and m denote the orders of the polynomials in x and
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y, respectively, the number of displacement nodes required is p ¼ ð‘ þ 1Þðmþ 1Þ. Eq. (11) can be expressed in
matrix form as

fDg ¼ ½F̄ ðx; ZÞ�fGg, (12)

where fGgT ¼ W 1 y1 f1 W 2 y2 f2 � � � W n yn fn

n o
and ½F̄ ðx; ZÞ�3�3n ¼ ½ ½F 1ðx; ZÞ�

½F2ðx; ZÞ�½F 3ðx; ZÞ� � � ½Fnðx; ZÞ��. Matrix ½Fiðx; ZÞ�3x3 in which i ¼ 1; 2; 3; . . . n, is given as

½F ðx; yÞ� ¼

f iðx; ZÞ 0 0

0 f iðx; ZÞ 0

0 0 f iðx; ZÞ

2
64

3
75. (13)

Using Eq. (12) in Eq. (2), the following is obtained:

fX g ¼ ½d�½F̄ ðx; ZÞ�fGg ¼ ½B�fGg, (14)

where ½B�5�5p ¼ ½d�½F̄ ðx; ZÞ� and is not presented in its detailed form because of large size. Now, by substituting
Eq. (14) into Eq. (7), the following can be arrived at

U ¼ 1
2
fGgT½k�fGg and K ¼ 1

2
f _GgT½M�f _Gg. (15)

Here, matrix [k] represents the stiffness matrix of the whole plate and is given by

½k� ¼

Z þ1
�1

Z þ1
�1

½B�T½D�½B�jJðx; ZÞjdxdZ.

Similarly, the mass matrix consistent with the prescribed displacement field is given by

½M� ¼

Z þ1
�1

Z þ1
�1

½F̄ ðx; ZÞ�T½A0�½F̄ ðx; ZÞ�jJðx; ZÞjdxdZ. (16)

To calculate the stiffness and mass matrices given above in Eq. (16), the integration will be carried out
numerically over the entire domain of the plate using the Gauss-method, in which the number of Gauss points
to be used will depend upon the orders of the interpolating polynomials that have been used in the geometric
and displacement fields (Eqs. (10) and (11)). The stiffness and mass matrices for each quadrilateral region will
be assembled to get the same for the doubly connected plate. For the linear plate problems, the in-plane and
bending equations are decoupled meaning that the two modes of deformation can be evaluated separately.

4. Buckling analysis

A method to obtain the bucking load is discussed in this section for a plate segment bounded by four edges
as shown in Fig. 2. To calculate the buckling load under the membrane stresses sx, sy and sxy due to an in-
plane load on the plate under investigation, the following equation is used (Bulson [2]):

T ¼
1

2
h

ZZ
Area

qw

qx

qw

qy

� � sx sxy

sxy sy

" # qw

qx
qw

qy

8>><
>>:

9>>=
>>;dxdy: (17)

Substituting Eq. (11), which represents the displacement fields, into the above, the following can be deduced
after some simple algebra:

T ¼ 1
2
fGgT½KL�fGg, (18)

wherein a vector fGg has been defined in Eq. (12) and [KL] is the load matrix, which will be obtained via
numerical integration using the Gauss method. While integrating for [KL], the state of in-plane stress at each
integration point is secured first from the analysis using only the displacement fields for u and v. Taking the
variation of the potential energy, one can easily derive the equilibrium equation ð½k� þ Pcr½KL�ÞfGg ¼ 0, which
is an eigenvalue problem. The symbol Pcr is the critical in-plane load applied to the edge of the plate. It is a
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standard practice to calculate the values of the buckling coefficient k ¼ Pcra=ðp2DÞ for plate buckling
problems. In this paper also, the buckling coefficient has been calculated for rhombic and square plates subject
to different boundary and loading conditions.

4.1. Square and rhombic plates

For a full plate without the opening, four corner points are used as the geometric nodes. The orders of the
interpolating polynomials in x and Z of Eq. (11) are taken to be equal, i.e. ‘ ¼ m, in the numerical calculations.
To examine the validity of the method, a convergence study is performed on a rhombic plate with a ¼

b; h=a ¼ 0:05 and skew angles of a ¼ 0�; 15�; 30�; 45�; 60� and 751 (as shown in Fig. 3). All four sides of the
plate are simply supported (SSSS) and the computation for this purpose begins with the second order
polynomial and ends with the 16th order. The numerical values for the buckling coefficient k are plotted in
Fig. 5 against the order of polynomials ‘ or m in each of x and Z, respectively. Convergence is achieved
monotonically with all six cases involving skew angle (a) ranging from 01 to 751. It is found in this figure that
using higher than tenth order polynomials in x and Z yield accurate results for the cases with a ¼ 0� 60�,
whereas for skew angle 751 more terms are required in the displacement fields. Also seen in here is that in the
case of 151 skew angle, the value of k jumps a little showing that the use of 16th and higher order polynomials
in the displacement fields can produce numerical instability. Such instability in the calculation does arise due
to the fact that there is a considerable amount of mismatch between the first and last coefficients of the
polynomials, if the order of the polynomials in the displacement fields is very high. Again, in some cases, it can
be obvious, whereas in others it may not be present. However, sixteenth order polynomials are really very high
in this type of calculations. Results calculated using twelfth-order polynomials for square plates from the
present method are next compared with those obtained by a commercially available computer code I-DEAS
[25] and also with the published data in the literature [16], which are presented in Table 1. An excellent
agreement is observed here. Presented in Table 2 are the results for skew plates without a hole from the present
method along with the appropriate data published by other researchers [11,14]. Two values of the thickness
parameter h=a ¼ 0:10 and 0.05; Poisson’s ratio n ¼ 0:3; and skew angles a ¼ 0�; 15�; 30�; 45�; 60� and 751 are
considered for the three different combinations, viz. all sides SSSS, all sides clamped (CCCC), and
clamped–free–clamped–free (CFCF), respectively. Results in this table are found to be in the neighborhood of
5% of each other. Results for skew angles a ¼ 601 and 751 are included in this table for future references as
they are not available elsewhere, to the authors’ knowledge.

4.2. Square plate with a circular hole at the center

A square plate with a circular hole at the center and partially and symmetrically loaded over a length of c on
the two vertical edges is analyzed using a two element model as shown in Fig. 4 with a ¼ b. Each element in
the model is defined by a grid of 3� 3 geometric points for accurate representation of the plate area. In this
case also, the calculation begins with the convergence study by considering the parameters n ¼ 0:3; h=a ¼ 0:01;
the load applied on the entire vertical edge; and three hole sizes with d=a ¼ 0:1; 0:3 and 0.5, respectively. From
the buckling coefficient (k) versus order of the polynomial plots as shown in Fig. 6, it is found that there is a
Table 1

Buckling coefficient k, for square plate subjected to uniaxial loading on two opposite sides: h=a ¼ 0:01; n ¼ 0:3

c/a SSSS CCCC CFCF

P.M. I-DEAS Ref. [16] P.M. I-DEAS Ref. [16] P.M. I-DEAS Ref. [16]

0 2.69 2.60 2.60 6.89 6.68 6.86 3.79 3.64 3.68

0.25 2.76 2.71 2.73 7.14 7.05 7.19 3.80 3.70 3.74

0.50 3.05 3.04 3.04 8.06 8.02 8.21 3.88 3.83 3.92

0.75 3.52 3.52 — 8.79 9.08 — 3.95 3.93 —

1.00 4.00 4.00 3.97 10.05 10.05 10.15 3.91 3.91 3.91
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Table 2

Buckling coefficient k, for skew plates subjected to uniaxial compressive loading with different boundary conditions ðn ¼ 0:3Þ

B.C h=a Skew angle (a) (deg) P.M. Ref. [14] Ref. [11]

SSSS 0.1 0 3.79 3.73 3.79

15 3.94 4.05 4.14

30 5.11 4.85 4.93

45 8.00 7.61 7.72

60 14.90 — —

75 32.93 — —

0.05 0 3.94 3.93 3.94

15 4.22 4.33 4.33

30 5.54 5.39 5.42

45 8.94 8.69 8.74

60 18.41 — —

75 57.04 — —

CCCC 0.1 0 8.29 8.18 8.29

15 8.77 8.76 8.77

30 10.63 10.33 10.38

45 13.69 13.29 13.69

60 20.23 — —

75 37.74 — —

0.05 0 9.56 9.54 9.56

15 10.23 10.21 10.23

30 12.58 12.52 12.57

45 17.96 17.82 17.97

60 31.28 — —

75 84.39 — —

CFCF 0.1 0 3.51 3.51 3.51

15 3.79 3.77 3.79

30 4.81 4.78 4.80

45 6.33 6.31 6.33

60 9.31 — —

75 18.81 — —

0.05 0 3.80 3.80 3.80

15 4.14 4.13 4.14

30 5.36 5.35 5.37

45 7.46 7.37 7.47

60 11.90 — —

75 29.83 — —

a

b 

c α 

x

y 

Fig. 3. Skew plate subject to compressive load only on part of the edge.

A.V. Singh, M. Tanveer / Journal of Sound and Vibration 295 (2006) 76–9382
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a/2

c/2

d/2

b/2

Fig. 4. Quarter model for a rectangular plate subject to partial in-plane edge load with a circular opening at the center.

Fig. 5. Buckling coefficient (k) versus order of the polynomials for the convergence study on a simply supported skew plate with

h=a ¼ 0:05: � , a ¼ 75�; B, a ¼ 60�; �, a ¼ 45�; n, a ¼ 30�; +, a ¼ 15�; J, a ¼ 0�.

A.V. Singh, M. Tanveer / Journal of Sound and Vibration 295 (2006) 76–93 83
rapid convergence in the results. Shown in Fig. 7 are the values of the buckling coefficient from the present
method using tenth order polynomials and I-DEAS [25] plotted against the hole size parameter (d/a) for two
types of loading on the simply supported (SSSS) plate. The value of c=a ¼ 1:0 represents the case in which the
load is applied on the full width of the vertical edge, whereas the case with c=a ¼ 0:5 correspond to the applied
load distributed only half the width of the vertical edge. There is good agreement between the results.
Agreement is much better for plates with a small diameter hole at the center. The maximum difference in this
comparison is 6.7%. To envision the effects of the hole size on the buckling coefficient, extra results are plotted
in Fig. 8 for the SSSS case and Fig. 9 for the CFCF case. Four values of the load distribution parameter
c=a ¼ 1:00, 0.75, 0.50 and 0.25 are considered for each of the two above mentioned boundary conditions in
Figs. 8 and 9, respectively. The buckling coefficient (k) decreases with the increase in the hole diameter and
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Fig. 6. Buckling coefficient (k) versus order of the polynomials for the convergence study on a simply supported square plate with a

circular hole (d=a) at the center. n, d=a ¼ 0:1; +, d=a ¼ 0:3; J, d=a ¼ 0:5.

Fig. 7. Buckling coefficient (k) versus the normalized diameter of the hole (d/a) at the center of simply supported square plates with

partially loaded edge showing comparison of results from the present method (P.M.) and I-DEAS [25]. Solid line—present method, dashed

line—I-DEAS: n, c=a ¼ 1:0; J, c=a ¼ 0:5.

A.V. Singh, M. Tanveer / Journal of Sound and Vibration 295 (2006) 76–9384
also, if the load is spread over the full width of the vertical edges, the stability of the plate is improved. Effects
of the plate thickness on the stability of the square plate with a hole (d=a ¼ 0:25) at the center can be examined
from the results plotted against the thickness parameter (h/a) in Figs. 10 and 11 for the boundary conditions of
SSSS and CFCF, respectively. It is noticed that the thickness has very minor influence on the overall stability
of the plate. But, the type of distribution of the load represented by parameter (c=a) has significant influence.
As higher the value of c/a, the better the stability of the plate.
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Fig. 8. Buckling coefficient (k) versus the normalized diameter of the hole (d/a) at the center of simply supported square plates with

partially loaded edge. �, c=a ¼ 1:0; n, c=a ¼ 0:75; +, c=a ¼ 0:5; J, c=a ¼ 0:25.

Fig. 9. Buckling coefficient (k) versus the normalized diameter of the hole (d/a) at the center of clamped–free–clamped–free square plates

with partially loaded edge. �, c=a ¼ 1:0; n, c=a ¼ 0:75; +, c=a ¼ 0:5; J, c=a ¼ 0:25.

A.V. Singh, M. Tanveer / Journal of Sound and Vibration 295 (2006) 76–93 85
5. Vibration analysis

The matrix equation of motion, ½M�f €Gg þ ½k�fGg ¼ 0, for the free vibration can be derived by the standard
procedure of minimization of the potential energy.

In this section, the non-dimensional frequency parameter l ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
is calculated first for square and

rhombic plates. Using the full plate model and tenth-order polynomials in the displacement field, the first five
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Fig. 10. Buckling coefficient (k) versus normalized thickness (h=a) for simply supported square plate with a circular hole of d=a ¼ 0:25 at

the center and partially loaded at the edge. �, c=a ¼ 1:0; n, c=a ¼ 0:75; +, c=a ¼ 0:5; J, c=a ¼ 0:25.

Fig. 11. Buckling coefficient (k) versus normalized thickness (h/a) for clamped–free–clamped–free square plate with a circular hole of

d=a ¼ 0:25 at the center and partially loaded at the edge. �, c=a ¼ 1:0; n, c=a ¼ 0:75; +, c=a ¼ 0:5; J, c=a ¼ 0:25.

A.V. Singh, M. Tanveer / Journal of Sound and Vibration 295 (2006) 76–9386
natural frequencies are calculated by the present method and also by I-DEAS for an all side SSSS rhombic
plate having a wide range of skew angle, 0pap75�. From the results shown in Table 3, it is found that the two
sets of results are in very good agreement. The maximum discrepancy of 4.1% is found in the first frequency
for the case with a ¼ 75�.

Since the displacement shape functions are attached to the degrees of freedom of each nodal point, it is
possible to analyze plates supported at discrete points or only at part of an edge. Therefore, full square and
rhombic plates, free along the two horizontal edges and supported only on part of the other two skewed edges,
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Table 3

First five dimensionless frequencies l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
oa2 for rhombic plates with all sides simply supported (h=a ¼ 0:01, v ¼ 0:3)

Mode a ¼ 01 a ¼ 151 a ¼ 301

P.M. I-DEAS P.M. I-DEAS P.M. I-DEAS

1 19.73 19.73 20.73 20.85 24.69 24.90

2 49.30 49.31 48.11 48.15 52.56 52.58

3 49.30 49.31 55.84 56.04 71.24 71.66

4 78.84 78.86 78.79 78.90 83.39 83.69

5 98.52 98.58 104.43 103.82 122.02 122.52

a ¼ 451 a ¼ 601 a ¼ 751

1 34.24 34.90 60.96 63.26 194.57 202.89

2 66.11 66.18 104.51 104.75 280.89 282.24

3 99.54 100.11 146.51 147.58 354.88 359.15

4 106.10 107.26 195.30 195.79 440.53 440.06

5 140.08 140.44 203.60 207.14 539.75 526.53

Table 4

First five dimensionless natural frequencies l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
oa2 for square and rhombic plates (h=a ¼ 0:01; n ¼ 0:3)

Mode c=a ¼ 1:0 c=a ¼ 2=3 c=a ¼ 1=3

P.M. I-DEAS P.M. I-DEAS P.M. I-DEAS

CFCF square plate

1 22.13 22.14 20.73 19.63 14.47 12.76

2 26.36 26.33 23.21 21.30 15.16 13.85

3 43.31 43.33 40.04 38.01 31.18 29.26

4 61.01 61.04 56.69 51.49 33.63 29.56

5 67.01 66.92 59.39 52.58 34.51 30.05

SFSF square plate

1 9.62 9.63 9.51 9.45 8.51 8.48

2 16.12 16.09 15.38 14.72 11.43 10.45

3 36.49 36.53 34.36 33.30 26.56 26.35

4 38.88 38.90 38.30 37.28 29.83 26.74

5 46.67 46.61 45.05 42.11 32.07 27.08

SFSF rhombic plate, a ¼ 301

1 12.10 12.13 11.41 11.31 9.64 9.58

2 17.44 17.61 15.26 15.08 10.97 10.66

3 35.85 35.86 35.33 35.01 27.17 26.11

4 49.08 49.24 43.61 43.25 31.65 28.70

5 60.67 60.89 51.55 49.69 38.71 38.50

CFCF rhombic plate, a ¼ 301

1 27.319 27.345 24.626 23.013 17.135 15.350

2 30.446 30.437 26.190 24.148 17.987 16.491

3 49.230 49.198 47.450 45.929 35.938 30.531

4 73.532 73.576 64.713 58.867 38.034 32.578

5 80.568 80.414 67.630 60.914 44.953 42.803

A.V. Singh, M. Tanveer / Journal of Sound and Vibration 295 (2006) 76–93 87
are analyzed by the present method and also by the FEM and the results are presented in Table 4. Here, the
ratio (c/a) defines the supported portion of an edge, similar to the partially loaded edge shown in Fig. 4.
Results from both sources match extremely well for the case of the square plate supported on the full width of
the edge for which c=a ¼ 1:0. The agreement is not so good for the cases with (c=a ¼ 2=3) and (c=a ¼ 1=3) and
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Table 5

First five dimensionless natural frequencies l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
oa2 for square and rectangular plates with a circular hole at the center

Mode CCCC CFCF SFSF

P.M. I-DEAS P.M. I-DEAS P.M. I-DEAS

Square plate with a=b ¼ 1:0; h=b ¼ 0:01; d=b ¼ 0:25; n ¼ 0:3
1 37.52 37.41 22.39 22.39 9.29 9.29

2 125.22 125.25 43.34 43.30 35.67 35.66

3 145.77 144.97 118.56 118.61 87.58 87.58

4 230.77 230.33 137.48 137.29 122.37 122.43

5 290.11 289.89 159.48 158.70 140.72 139.93

Rectangular plate with a=b ¼ 2:0; h=b ¼ 0:01; d=b ¼ 0:25; n ¼ 0:3
1 99.55 99.22 22.02 22.02 9.32 9.32

2 180.39 179.83 104.43 103.93 86.17 86.09

3 351.38 349.99 118.07 117.94 100.67 100.17

4 492.48 491.36 228.28 226.90 206.28 205.23

5 568.52 568.63 294.73 294.28 242.91 242.41

Table 6

First five dimensionless natural frequencies l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
oa2 for square and rectangular plates simply supported on all edges with a circular

hole at the center (h=b ¼ 0:01; n ¼ 0:3)

Mode P.M. I-DEAS P.M. I-DEAS P.M. I-DEAS

Square plate

d=b ¼ 0 d=b ¼ 0:1 d=b ¼ 0:2

1 19.73 19.73 19.53 19.49 19.28 19.24

2 98.52 98.56 97.63 97.20 95.83 95.86

3 98.52 98.56 97.71 97.76 101.57 101.06

4 177.07 177.20 176.88 176.54 181.52 181.19

5 255.41 255.67 255.07 253.14 246.83 246.99

d=b ¼ 0:3 d=b ¼ 0:4 d=b ¼ 0:5

1 19.48 19.44 20.43 20.39 22.43 22.40

2 93.13 93.15 89.55 89.55 86.47 86.50

3 113.00 112.52 129.99 129.64 146.50 146.39

4 190.06 189.77 201.64 201.30 219.32 218.82

5 238.65 238.44 243.71 243.25 272.09 271.76

Rectangular plate (a=b ¼ 2)

d=b ¼ 0 d=b ¼ 0:1 d=b ¼ 0:2

1 49.34 49.34 48.99 48.87 48.33 48.19

2 128.23 128.24 127.57 127.22 127.20 126.93

3 285.84 285.93 284.47 283.57 284.99 283.22

4 364.56 364.73 362.56 361.22 363.42 361.73

5 443.22 443.33 441.89 440.37 444.90 443.73

d=b ¼ 0:3 d=b ¼ 0:4 d=b ¼ 0:5

1 47.90 47.80 48.03 47.94 48.88 48.79

2 128.82 128.63 133.04 132.90 140.33 140.24

3 288.00 287.04 289.43 288.67 288.06 287.37

4 369.50 368.53 378.53 377.84 389.63 389.37

5 450.86 450.52 454.86 454.76 461.38 461.58
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worsens with smaller (c/a) and higher mode number. The maximum discrepancy at the fifth mode is seen to be
in the neighborhood of 18%. The agreement is slightly better between the frequencies from the two methods
for the rhombic plate. The authors believe here that the I-DEAS produces much lower value for the partially
loaded edge case because it fails to apply zero slope condition at the two ends of the CFCF edges.

In the next series of calculations, square and rectangular plates with a circular hole at the center, h=b ¼ 0:01
and Poisson’s ratio n ¼ 0:30 are considered. For the rectangular plate the aspect ratio a=b ¼ 2 is used in the
Fig. 12. First five dimensionless frequency values versus the normalized diameter of the hole (d/a) at the center of a square plate with all

edges clamped. J, Mode-1; +, Mode-2; n, Mode-3; �, Mode-4; }, Mode-5.

Fig. 13. First five dimensionless frequency values versus the normalized diameter of the hole (d/a) at the center of a square plate with

clamped–free–clamped–free edges. J, Mode-1; +, Mode-2; n, Mode-3; �, Mode-4; }, Mode-5.



ARTICLE IN PRESS
A.V. Singh, M. Tanveer / Journal of Sound and Vibration 295 (2006) 76–9390
calculation. Results from the present and FE methods are presented in Table 5 for three types of boundary
conditions, namely CCCC, CFCF and simply supported–free–simply supported–free (SFSF), respectively.
This table also has the results obtained by I-DEAS [25] and very good agreement is found here. To examine
the effects of the hole diameters on the dimensionless frequency parameters of square and rectangular plates
with h=b ¼ 0:01 and Poisson’s ratio n ¼ 0:30 and all sides SSSS, are calculated and presented in Table 6. Hole-
diameters used in the calculation are: d=b ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The two sets of results are in excellent
agreement. After comparing results with I-DEAS, the frequency parameters for square plates are calculated
for boundary conditions CCCC, CFCF and SFSF and plotted against the normalized diameter of the hole at
Fig. 14. First five dimensionless frequency values versus the normalized diameter of the hole (d/a) at the center of a square plate with

simply supported–free–simply supported–free edges. J, Mode-1; +, Mode-2; n, Mode-3; �, Mode-4; }, Mode-5.

Fig. 15. First five dimensionless frequency values versus the normalized thickness (h=a) for a square plate with a circular hole at the center

with edges simply supported. Solid line—d/a ¼ 0.25, dashed line—d/a ¼ 0; J, Mode-1; +, Mode-2; n, Mode-3, �, Mode-4; }, Mode-5.
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the center in Figs. 12–14, respectively. The first mode frequencies generally remain unchanged except for the
CCCC case for which the frequency parameter increases with the hole-diameter. Other modes show different
variation patterns depending upon the boundary conditions.

Figs. 15–18 contain the plots showing the variation of the frequency parameter against the thickness
parameter (h=a) for the SSSS boundary condition and the three cases just mentioned above. In these figures,
results for the square plates with and without the hole and having d=a ¼ 0:25 are plotted by solid and dashed
lines, respectively. The values of l ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the first mode generally remain constant with the varying
Fig. 16. First five dimensionless frequency values versus the normalized thickness (h=a) for a square plate with a circular hole at the center

with all edges clamped. Solid line—d/a ¼ 0.25, dashed line—d/a ¼ 0; J, Mode-1; +, Mode-2; n, Mode-3; �, Mode-4; }, Mode-5.

Fig. 17. First five dimensionless frequency values versus the normalized thickness (h=a) for a square plate with a circular hole at the center

with clamped–free–clamped–free edges. Solid line—d=a ¼ 0:25, dashed line—d=a ¼ 0; J, Mode-1; +, Mode-2; n, Mode-3; �, Mode-4;

}, Mode-5.
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Fig. 18. First five dimensionless frequency values versus the normalized thickness (h=a) for a square plate with a circular hole at the center

with simply supported–free–simply supported–free edges. Solid line—d=a ¼ 0:25, dashed line—d=a ¼ 0; J, Mode-1; +, Mode-2; n,

Mode-3; �, Mode-4; }, Mode-5.
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h/a. In such case the actual frequency increases linearly with the thickness of the plate. For the higher modes of
vibration, the frequency parameter l decreases with h/a. For these cases as well the actual frequency increases
with the thickness, but the rate of increase with respect to the plate thickness decreases along the h/a axis. This
can possibly be due to the rotary inertia and shear deformation terms included in the formulation. Their
effects are quite significant at the higher modes.
6. Concluding remarks

A numerical investigation dealing with buckling and free vibration of doubly connected first-order shear
deformable plates has been presented in this paper. Square and rhombic plates are considered as numerical
examples for which the results are compared successfully with published data in the literature and also the
finite element results. Square and rectangular plates with a circular hole at the center have also been
considered in this investigation. It is found that the buckling coefficient decreases with the increasing diameter
of the circular opening in the plate. The change in thickness of the plate seems to have very minor effect on the
value of the buckling coefficient. Numerical results are also calculated for rhombic plates with large values of
the skew angles a ¼ 60� and a ¼ 75�. For the case of the vibrating plate, the frequency parameter l ¼
oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
generally remains constant with the change in the hole-size for the fundamental mode, except for

the case when the plate is clamped on all of its four sides. The frequency parameter at the fifth mode of this
case decreases initially and then starts increasing for openings with diameter greater than 30% of the length of
the plate, i.e. ðd=a40:3Þ. From the successful use of the p-type numerical method in this paper, it is seen that a
wide range of plate buckling and vibration problems can be solved accurately.
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